New mutations in acetylcholine receptor subunit genes reveal heterogeneity in the slow-channel congenital myasthenic syndrome.

نویسندگان

  • A G Engel
  • K Ohno
  • M Milone
  • H L Wang
  • S Nakano
  • C Bouzat
  • J N Pruitt
  • D O Hutchinson
  • J M Brengman
  • N Bren
  • J P Sieb
  • S M Sine
چکیده

Mutations in genes encoding the epsilon, delta, beta and alpha subunits of the end plate acetylcholine (ACh) receptor (AChR) are described and functionally characterized in three slow-channel congenital myasthenic syndrome patients. All three had prolonged end plate currents and AChR channel opening episodes and an end plate myopathy with loss of AChR from degenerating junctional folds. Genetic analysis revealed heterozygous mutations: epsilon L269F and delta Q267E in Patient 1, beta V266M in Patient 2, and alpha N217K in Patient 3 that were not detected in 100 normal controls. Patients 1 and 2 have no similarly affected relatives; in Patient 3, the mutation cosegregates with the disease in three generations. epsilon L269F, delta Q267E and beta V266M occur in the second and alpha N217K in the first transmembrane domain of AChR subunits; all have been postulated to contribute to the lining of the upper half of the channel lumen and all but delta Q267E are positioned toward the channel lumen, and introduce an enlarged side chain. Expression studies in HEK cells indicate that all of the mutations express normal amounts of AChR. epsilon L269F, beta V266M, and alpha N217K slow the rate of channel closure in the presence of ACh and increase apparent affinity for ACh; epsilon L269F and alpha N217K enhance desensitization, and epsilon L269F and beta V266M cause pathologic channel openings in the absence of ACh, rendering the channel leaky, delta Q267E has none of these effects and is therefore a rare polymorphism or a benign mutation. The end plate myopathy stems from cationic overloading of the postsynaptic region. The safety margin of neuromuscular transmission is compromised by AChR loss from the junctional folds and by a depolarization block owing to temporal summation of prolonged end plate potentials at physiologic rates of stimulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A beta-subunit mutation in the acetylcholine receptor channel gate causes severe slow-channel syndrome.

Point mutations in the genes encoding the acetylcholine receptor (AChR) subunits have been recognized in some patients with slow-channel congenital myasthenic syndromes (CMS). Clinical, electrophysiological, and pathological differences between these patients may be due to the distinct effects of individual mutations. We report that a spontaneous mutation of the beta subunit that interrupts the...

متن کامل

Novel delta subunit mutation in slow-channel syndrome causes severe weakness by novel mechanisms.

We investigated the basis for a novel form of the slow-channel congenital myasthenic syndrome presenting in infancy in a single individual as progressive weakness and impaired neuromuscular transmission without overt degeneration of the motor endplate. Prolonged low-amplitude synaptic currents in biopsied anconeus muscle at 9 years of age suggested a kinetic disorder of the muscle acetylcholine...

متن کامل

Congenital myasthenic syndromes: recent advances.

Congenital myasthenic syndromes (CMS) can arise from presynaptic, synaptic, or postsynaptic defects. Mutations of the acetylcholine receptor (AChR) that increase or decrease the synaptic response to acetylcholine (ACh) are a common cause of the postsynaptic CMS. An increased response occurs in the slow-channel syndromes. Here, dominant mutations in different AChR subunits and in different domai...

متن کامل

Congenital myasthenic syndromes.

PURPOSE OF REVIEW Congenital myasthenic syndromes are a heterogeneous group of diseases caused by genetic defects affecting neuromuscular transmission. In this article, a strategy that leads to the diagnosis of congenital myasthenic syndromes is presented, and recent advances in the clinical, genetic and molecular aspects of congenital myasthenic syndrome are outlined. RECENT FINDINGS Besides...

متن کامل

Congenital myasthenic syndromes: progress over the past decade.

Congenital myasthenic syndromes (CMS) stem from defects in presynaptic, synaptic basal lamina, and postsynaptic proteins. The presynaptic CMS are associated with defects that curtail the evoked release of acetylcholine (ACh) quanta or ACh resynthesis. Defects in ACh resynthesis have now been traced to mutations in choline acetyltransferase. A basal lamina CMS is caused by mutations in the colla...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human molecular genetics

دوره 5 9  شماره 

صفحات  -

تاریخ انتشار 1996